

Approcci innovativi contro i batteri antibiotico-resistenti

Claudia Sala

The Siena cathedral: "memorial" to the plague

Plan for building larger cathedral in the XIV century

Plague in 1348 \rightarrow socio-economic crisis \rightarrow construction works interrupted and never resumed

Warning against epidemics and pandemics

Today's silent pandemic: antimicrobial resistance (AMR)

AMR kills 5 million people per year

35,000 EU/EEA citizens (ECDC, 2022)

More than HIV and TB combined

WHO Bacterial Priority Pathogen List 2024

What can we do when antibiotics are useless?

- Discover new antibiotics
- Develop vaccines

Explore new avenues:

- monoclonal antibodies
- phages
- anti-virulence compounds
- > antimicrobial peptides
- host-directed therapies
- CRISPR-Cas-based approaches

New antibiotics on the way?

Article

A Gram-negative-selective antibiotic that spares the gut microbiome

https://doi.org/10.1038/s41586-024-07502-0

Received: 7 April 2023

Accepted: 1 May 2024

Kristen A. Muñoz^{1,2}, Rebecca J. Ulrich^{1,2}, Archit K. Vasan^{3,4,5}, Matt Sinclair^{3,4}, Po-Chao Wen^{3,4,5}, Jessica R. Holmes⁶, Hyang Yeon Lee^{1,2}, Chien-Che Hung^{7,8}, Christopher J. Fields⁶, Emad Tajkhorshid^{1,3,4,5}, Gee W. Lau⁹ & Paul J. Hergenrother^{1,2,4}

Lolamicin

- Gram-negative-specific
- Targets lipoprotein transport system (Lol)
- Active vs. MDR clinical isolates
- Effective in animals models
- Spares microbiota

lipoprotein trafficking

Shrivastava et al, 2019

Vacca, 2017 Ekiert et al., 2017

Phages & phage therapy: what is a phage?

Bacteriophage (phage) → virus that infects bacteria

Phages & phage therapy

Specificity of bacteriophages (advantages vs. drawbacks)

- \rightarrow Need accurate identification of bacterial pathogen
- → Precise diagnosis → precision/personalized medicine

Bacterial **resistance** to phages

Safety and effectiveness of therapy

A Phase 1b/2 Trial of the Safety and Microbiological Activity of **Bacteriophage Therapy in Cystic Fibrosis** Subjects Colonized With Pseudomonas Aeruginosa

clinicaltrial.gov NCT05453578 NIAID 2022

CRISPR-Cas-based approaches

IDEA: cleave bacterial genomic DNA → kill bacteria

CRISP

K. pneumoniae

Phage as a vehicle of scissors and guide:

- Cas12 protein: molecular scissors
- Guide RNA (gRNA) to direct Cas12 cleavage to specific target
- Target: genes on *K. pneumoniae* chromosome

Anti-virulence targets and compounds

Example: drugs that do not kill *M. tuberculosis* but reduce virulence

- Virulence factors
- ESX-1 (type VII secretion system)
- MptpB: phosphatase required for survival *in vivo*
- ➤ SapM: phosphatase → targets phagosome maturation
- ➤ Zmp1: peptidase → targets phagosome maturation

Gries et al., 2020

Antimicrobial peptides

Mode of action of AMPs

Host-directed therapy

Example: HDT vs. *M. tuberculosis*

- Several repurposed compounds (e.g. anticancer agents, diabetes therapy)
- Clinical trials ongoing (e.g. metformin on top of standard multidrug regimen)
- Complementary approach to standard drugs

mAbs & passive immunization

Passive immunization with horse serum as an effective treatment against diphtheria and tetanus

mAbs today: passive immunization and therapy vs. infectious diseases

Emil von Behring (1854 – 1917) 1901 Nobel prize in Physiology and Medicine

mAbs against infectious diseases

Advantages	Obstacles/open questions
Specificity (spare microbiota)	Accurate animal models for testing?
Only option for immunocompromised patients	Antigenic heterogeneity of pathogens
Enormous technological progress (cloning and expression)	Capsular layers may mask important antigens
Engineered mAbs \rightarrow improved penetration, effector functions, conjugation to drugs	Precise timing for administration? Prophylaxis? Therapy?

MAD Lab ongoing projects overview

mAbs for antigen discovery \rightarrow rational vaccine design

mAb cloning pipeline

mAbs vs. Klebsiella pneumoniae

Klebsiella pneumoniae: overview

New Delhi metallo-beta-lactamase (NDM) - producing K. pneumoniae

Global concern

- → Gram-negative, encapsulated, non-motile, opportunistic pathogen
- → Leading cause of hospital-acquired infections
 (i.e., pneumonia, UTI, bloodstream infections)
 → Kp acquired resistance to most classes of antibiotics,

including carbapenems

Enterococcus faecium Staphylococcus aureus Klebsiella pneumoniae Acinetobacter baumannii Pseudomonas aeruginosa Enterobacter species

Global spread of hypervirulent and pandrug-resistant ST147

1,933 ST147 isolates (6% of Kp genomes uploaded in PathogenWatch)

Persistent nosocomial outbreak of ST147 Kp in Tuscany

- Colonization to bloodstream infection
- 499 blood infection cases (2018-2022) with 22.7% lethality
- Extensive AMR profile, genetically evolving

mAb discovery in convalescent patients

Two mAb clusters targeting capsule and O-antigen with ng/mL bactericidal activity

Complementdependent killing

Roscioli et al, submitted

Cluster 1 mAbs promote opsonophagocytosis and enchained growth

10-100 μg/mL

10-100 µg/mL

Cluster 1 mAbs protect from bacterial challenge *in vivo*

Serum mAb concentration 24h hours post ip injection: 50-100 µg/mL

Protection against pandrug-resistant Kp correlates with mAb poly-functionality

- 1. Multi-functionality is important *in vivo*, right assays are important *in vitro*
- 2. Complement-based killing is not predictive of protection
- 3. KL64 shields O-antigen (and other antigens)

Conclusions & next challenges

Conclusions

- mAbs for tackling **health challenges**
- mAbs for addressing pandemic

preparedness

- mAbs for developing new research tools

Next challenges

- Deliver mRNA-encoded mAbs
- Bring mAbs to those in need
- Promote equitable access to mAbs
- mAbs for **defining correlates of**

protection and assist vaccine design

Tackling AMR requires a joint effort

• AMR is a hard challenge for antibiotics alone

- Vaccines and Antibiotics together have a better chance to control AMR
- By joining forces we can control AMR

Acknowledgements

Dr. Rino Rappuoli & MAD-Lab

Marco Falcone University Hospital Pisa

David Nicolau Hartford University Hospital

Robert Frenck CCHMC Cincinnati

Marcela Pasetti University of Maryland

Francesca Micoli GSK Vaccines Institute for Global Health

