

Applicazione dei Large Language Models nella sorveglianza e nel contrasto all'antimicrobico-resistenza

Antimicrobico-resistenza: cure e ambiente #8

17 giugno 2025

Applicazioni dell'Intelligenza Artificiale nello sviluppo di nuovi antimicrobici

Al per la sorveglianza dell'antimicrobico-resistenza nei contesti ospedalieri

2

Al a supporto delle strategie di Antimicrobial Stewardship

Prospettive future e sfide nell'uso dell'Intelligenza Artificiale per il contrasto all'AMR Artificial Intelligence (AI)

Machine Learning (ML)

Deep Learning

Generative Artificial Intelligence

> Large Language Models (LLM)

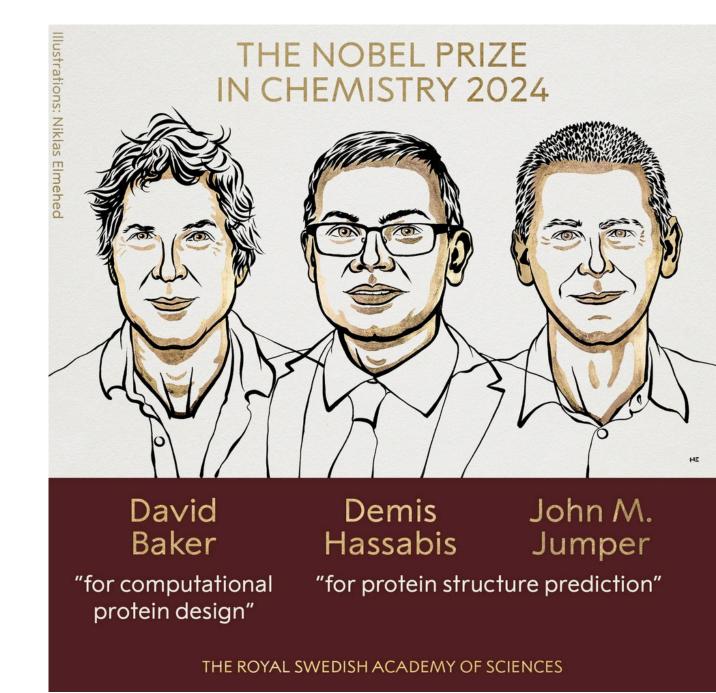
Generative Pre-Trained Transformers (GPT)

GPT-4

ChatGPT

Machine Learning tradizionale	Large Language Models
Dati strutturati	Dati strutturati e non strutturati (testi, immagini, genomica)
Necessario, manuale e specifico per ogni task	Non necessario: il modello apprende autonomamente rappresentazioni complesse
Limitata a compiti specifici	Estesa: un modello può essere riadattato a diversi compiti
Modello addestrato per uno specifico problema	Modello riutilizzabile su compiti diversi mediante prompting o fine-tuning
Richiede nuovo addestramento	Possibile rapido riadattamento attraverso prompt o fine-tuning su piccoli set di dati
Limitata o assente	Presente nei modelli più recenti (testo, immagini, dati tabulari)
	Dati strutturati Necessario, manuale e specifico per ogni task Limitata a compiti specifici Modello addestrato per uno specifico problema Richiede nuovo addestramento

Applicazioni dell'Intelligenza Artificiale nello sviluppo di nuovi antimicrobici


Necessità di sviluppare nuovi composti antimicrobici (drug discovery)

Struttura **3D** delle proteine a partire dalla sequenza amminoacidica

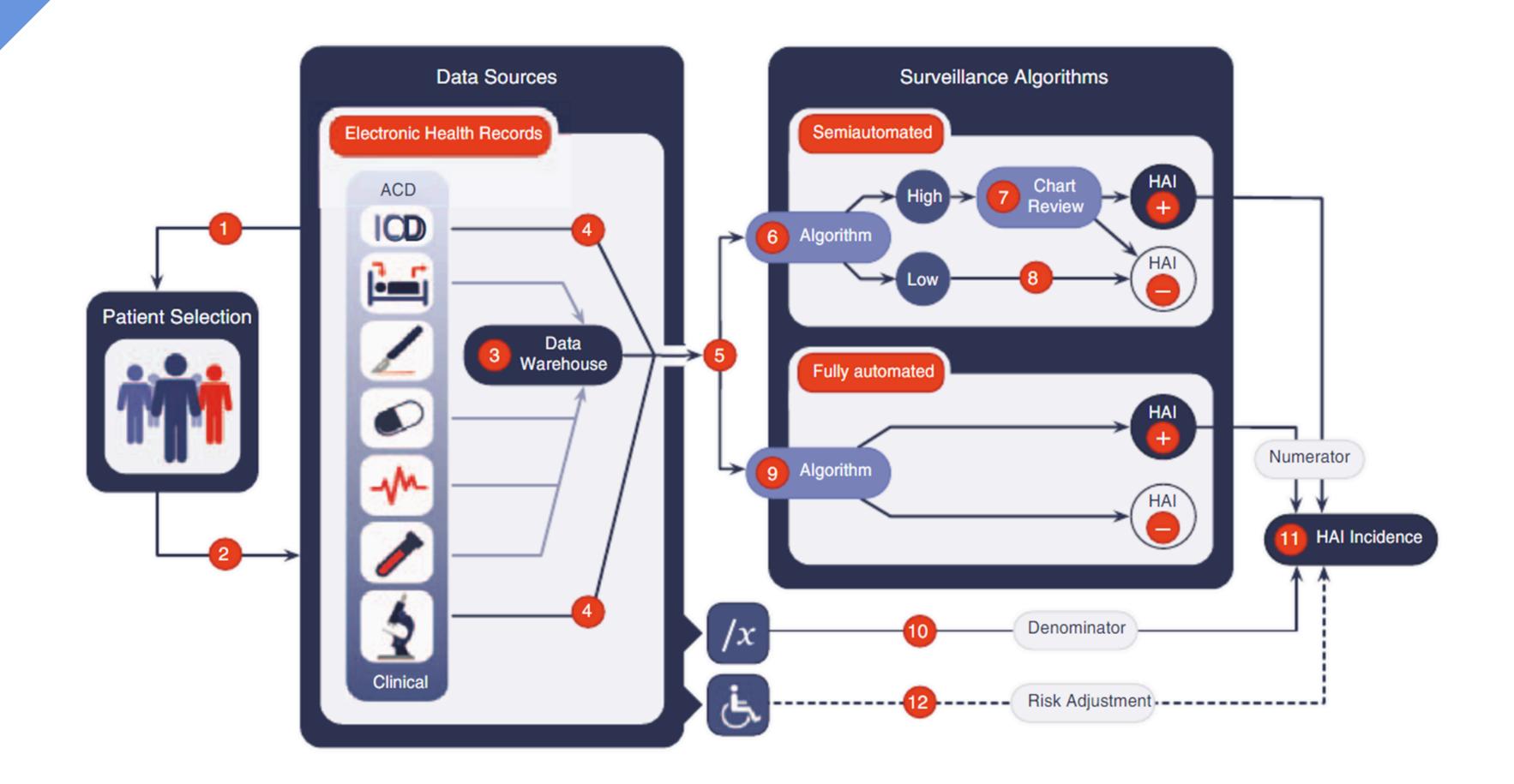
Sono state pubblicate le strutture tridimensionali di oltre **200 milioni** di proteine.

AlphaFold 3 che è in grado di predire oltre alla struttura delle proteine, del DNA e dell'RNA, anche dei ligandi e le loro interazioni

Applicazioni dell'Intelligenza Artificiale nello sviluppo di nuovi antimicrobici

Peptidi Antimicrobici:

sequenze fino a 32 amminoacidi, sono possibili oltre 10⁴¹ combinazioni


AMP-Designer

630,683 peptidi da **UniProt** per addestrare un foundation LLM (AMP-GPT) e poi sono stati forniti migliaia di esempi di peptidi con attività anti-microbica

Due composti identificati **KW13** and **Al18** hanno mostrato attività antibatterica contro *K. pneumoniαe* carbapenemasi-resistente in vivo su modello murino

Tempo necessario: fase in silico (11 giorni) + in vitro + in vivo = 48 giorni

Per la sorveglianza delle ICA vi è grande interesse nell'utilizzo di metodiche di AI (quasi esclusivamente basate su ML) per sistemi **semi-automatici** di sorveglianza.

> J Infect Public Health. 2020 Aug;13(8):1061-1077. doi: 10.1016/j.jiph.2020.06.006. Epub 2020 Jun 16.

Artificial intelligence-based tools to control healthcare associated infections: A systematic review of the literature

Alessandro Scardoni ¹, Federica Balzarini ¹, Carlo Signorelli ¹, Federico Cabitza ², Anna Odone ³

Nell'identificazione delle ICA più della metà dei modelli di **Machine Learning** raggiugnono un'AUROC superiore al 0.9.

Invece per la predizione delle ICA le performance sono più eterogenee

Aggiornamento Under Review

Artificial Intelligence use and performance in detecting and predicting healthcare-associated infections: a systematic review

Barbati Chiara^a, Viviani Luca^b, Vecchio Riccardo^b, Arzilli Guglielmo^c, De Angelis Luigi^c, Baglivo Francesco^c, Sacchi Lucia^d, Bellazzi Riccardo^d, Rizzo Caterina^c, Odone Anna*^{a,e}

2018-2024: 121 studi inclusi

Due task principali:

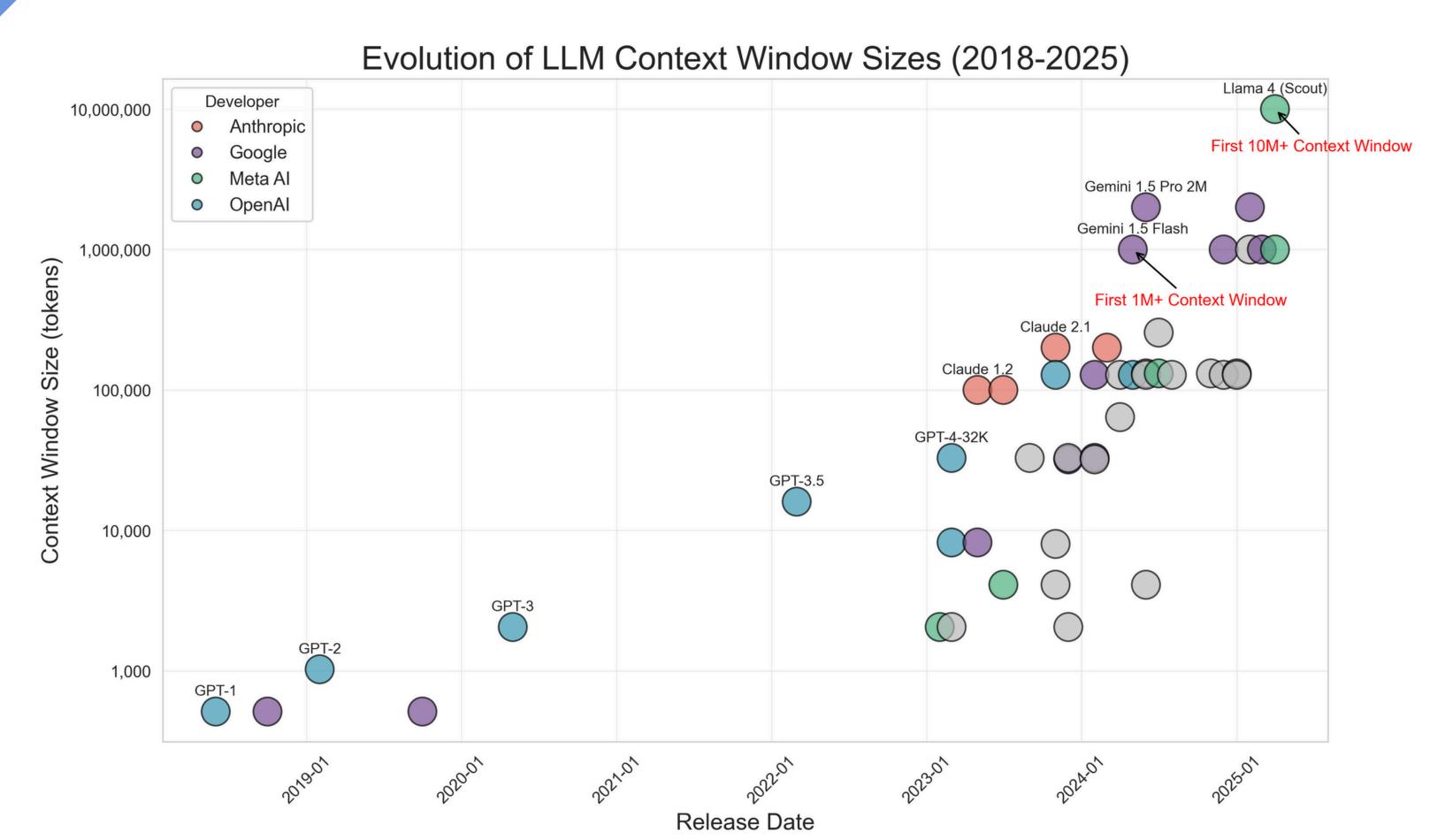
- 1. Identificazione ICA
 - 2. Predizione ICA

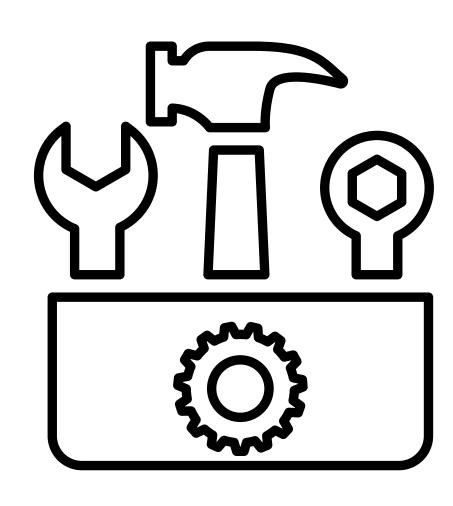
90% degli studi sono retrospettivi

Pilota su 40 pazienti usando un LLM per identificare le CLABSI

Performance of a large language model for identifying central line-associated bloodstream infections (CLABSI) using real clinical notes

Published online by Cambridge University Press: 30 October 2024


Guillermo Rodriguez-Nava (D), Goar Egoryan (D), Katherine E. Goodman (D), Daniel J. Morgan and Jorge L. Salinas (D)


Show author details >

gpt-4-turbo:
Sensibilità **80**% e
Specificità **35**%
nell'identificazione di
CLABSI.

Il **limite nel numero di token** in input (128k) non ha permesso di inserire tutte le informazioni cliniche necessarie e questo ha portato al **65% degli errori** (non c'era spazio sufficiente nella *context window*)

Risparmio di tempo: 5 minuti vs 75 minuti

Un approccio alternativo rispetto ad utilizzare i LLM per task di classificazione zero-shot è quello di sfruttarli in un apporccio combinato due step:

- 1. Estrarre da dati non strutturati delle variabili in formato strutturato (es. per le CLABSI: uso di catetere, febbre, etc..)
- Utilizzare metodi classici rule based o basati su machine learning per la classificazione

Al a supporto delle strategie di Antimicrobial Stewardship

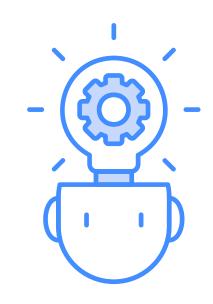
```
ORIGINAL ARTICLE · Articles in Press, March 18, 2025

Open Access
```

Comparing large language models for antibiotic prescribing in different clinical scenarios: which performs better?

```
Andrea De Vito (2) (3) (5) · Nicholas Geremia (2),3) · Davide Fiore Bavaro (4),5) · Susan K. Seo (6) · Justin Laracy (6) · Maria Mazzitelli (7) · Andrea Marino (8) · Alberto Enrico Maraolo (9) · Antonio Russo (10) · Agnese Colpani (1) · Michele Bartoletti (4),5) · Anna Maria Cattelan (7) · Cristina Mussini (11) · Saverio Giuseppe Parisi (12) · Luigi Angelo Vaira (13) · Giuseppe Nunnari (8) · Giordano Madeddu (1) Show less

Affiliations & Notes 


Article Info 

Linked Articles (3)
```

Comparazione di diversi LLMs nella **appropriatezza della prescrizione antibiotica** su 60 casi clinici valutati da 3 specialisti in malattie infettive.

Miglior modello **GPT-o1**:

trattamento appropriato nel **71.7**% dei casi,
dosaggio corretto nel **96.7**% dei casi,
durata del trattamento appropriata nel **75**% dei casi.

Al a supporto delle strategie di Antimicrobial Stewardship

► Antimicrob Steward Healthc Epidemiol. 2025 Mar 31;5(1):e90. doi: 10.1017/ash.2025.47 🖸

17 studi basati su Machine Learning 6 studi basati su LLMs

clinical decision support systems (CDSS)

manca standardizzazione per valutare gli LLM in questo ambito

Can we rely on artificial intelligence to guide antimicrobial therapy? A systematic literature review

Sulwan AlGain ^{1,2,™}, Alexandre R Marra ^{3,4}, Takaaki Kobayashi ^{4,5}, Pedro S Marra ⁶, Patricia Deffune Celeghini ³, Mariana Kim Hsieh ⁴, Mohammed Abdu Shatari ⁷, Samiyah Althagafi ⁸, Maria Alayed ¹, Jamila I Ranavaya ⁵, Nicole A Boodhoo ⁹, Nicholas O Meade ⁵, Daniel Fu ¹⁰, Mindy Marie Sampson ², Guillermo Rodriguez-Nava ², Alex N Zimmet ², David Ha ², Mohammed Alsuhaibani ¹, Boglarka S Huddleston ¹¹, Jorge L Salinas ²

► Author information ► Article notes ► Copyright and License information PMCID: PMC11986881 PMID: 40226293

Research methods

Protocol

Protocol for the development of the Chatbot Assessment Reporting Tool (CHART) for clinical advice 8

The CHART Collaborative

Correspondence to Bright Huo; brighthuo@dal.ca

Al a supporto delle strategie di Antimicrobial Stewardship

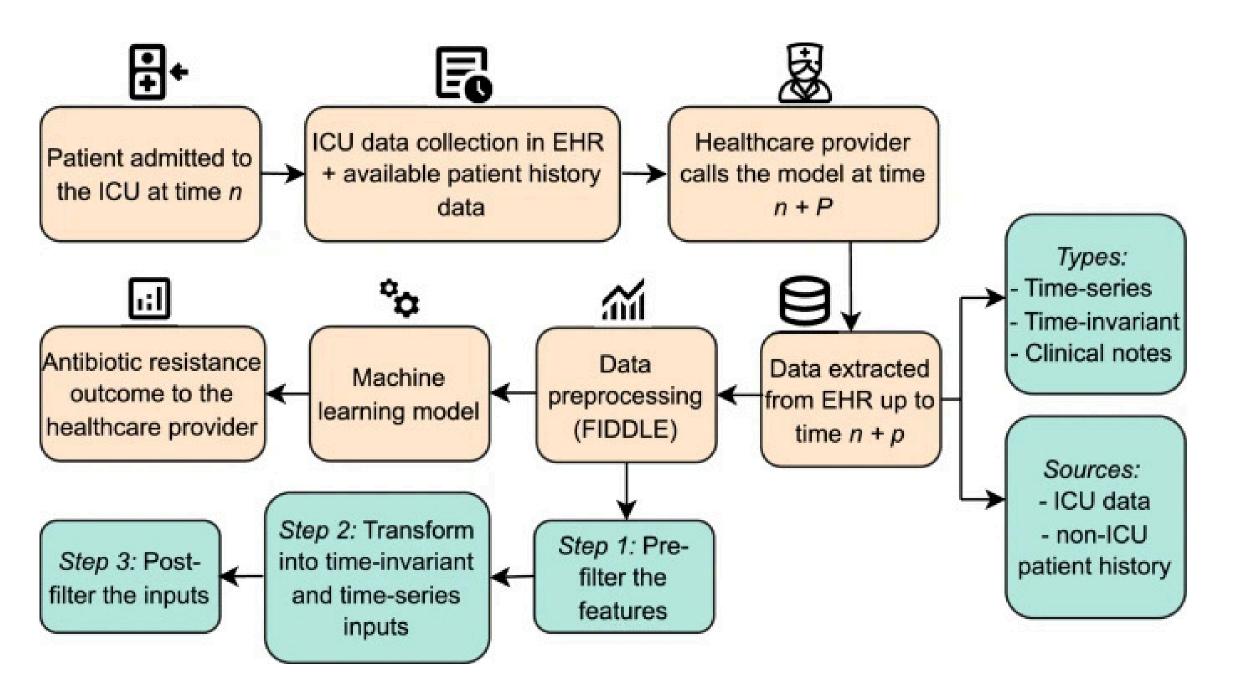
Immagina di essere uno specialista in malattie infettive e di ricevere una richiesta di consulenza da un altro reparto. Quando leggi la richiesta sul computer, un assistente intelligente basato su LLM ha già preparato un **riassunto coerente** della storia clinica e microbiologica del paziente, dei principali esami di laboratorio e strumentali, e dell'evoluzione della fase acuta negli ultimi giorni.

Perspective Open access | Published: 27 February 2025

Advantages and limitations of large language models for antibiotic prescribing and antimicrobial stewardship

Daniele Roberto Giacobbe [™], Cristina Marelli, Bianca La Manna, Donatella Padua, Alberto Malva, Sabrina Guastavino, Alessio Signori, Sara Mora, Nicola Rosso, Cristina Campi, Michele Piana, Ylenia Murgia, Mauro Giacomini & Matteo Bassetti

npj Antimicrobials and Resistance
 Article number: 14 (2025) | Cite this article
 1928 Accesses | 1 Altmetric | Metrics


Durante la visita, l'assistente intelligente può (i)

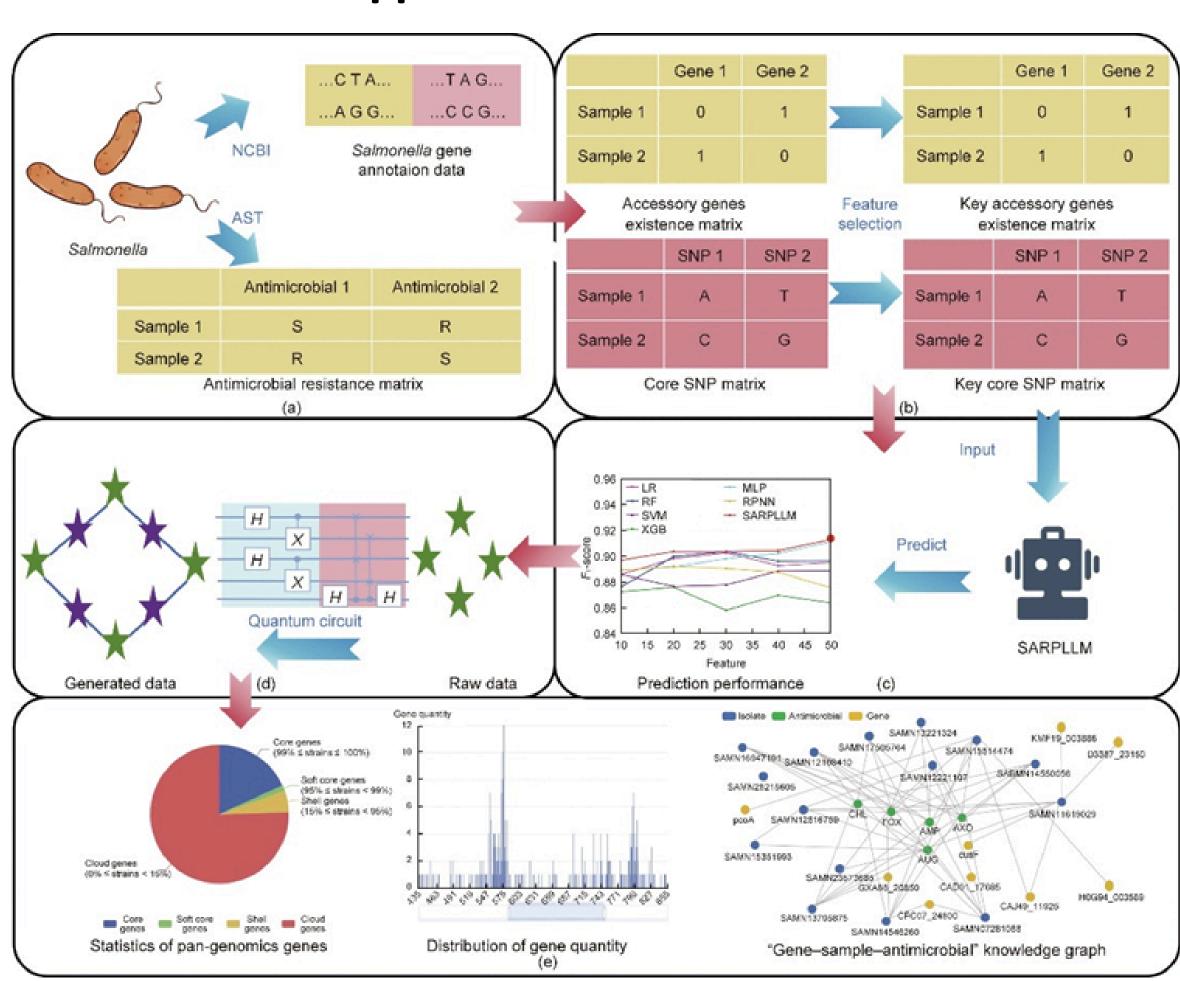
registrare e riassumere automaticamente le
nuove informazioni emerse e (ii) suggerire
domande aggiuntive da porre. (iii) Dopo aver
integrato i dati preesistenti con quelli appena
raccolti, l'assistente può anche proporre
delle raccomandazioni da rivedere

Affordable and real-time antimicrobial resistance prediction from multimodal electronic health records

Shahad Hardan [™], Mai A. Shaaban, Jehad Abdalla & Mohammad Yaqub

Scientific Reports 14, Article number: 16464 (2024) Cite this article

Dalla cartella clinica elettronica:


- (1) variabili **time-invariant** (età e sesso)
- (2) **time-series** (es. risultati di laboratorio),
- (3) testo **non strutturato** delle note cliniche

Combinazione di LLM (ClinicalBert) con ML tradizionale

Piattaforma predittiva per l'identificazione di ceppi di Salmonella multiresistenti

Developing a Predictive
Platform for Salmonella
Antimicrobial Resistance
Based on a Large Language
Model and Quantum
Computing. You et al. (2025).

Conversione dati genomici in un formato testuale analizzabile da un LLM (SARPLLM) ottimizzato tramite una tecnica di quantum computing

Prospettive future e sfide nell'uso dell'Intelligenza Artificiale per il contrasto all'AMR

Perspective Open access Published: 12 June 2025

How generative Al voice agents will transform medicine

Scott J. Adams, Julián N. Acosta & Pranav Rajpurkar

npj Digital Medicine 8, Article number: 353 (2025) | Cite this article

1273 Accesses **9** Altmetric Metrics

Come possiamo usare gli agenti vocali per il contrasto all'AMR?

Prospettive future e sfide nell'uso dell'Intelligenza Artificiale per il contrasto all'AMR

- 1. Le principali sfide all'adozione clinica dell'AI per l'AMR non sono tecniche, ma sistemiche: sicurezza, affidabilità, trasparenza e **integrazione nei workflow** clinici restano i principali ostacoli.
- 2. Serve una **governance** solida e standard di validazione rigorosi: framework regolatori chiari e validazioni cliniche strutturate sono indispensabili per garantire sicurezza ed efficacia.
- 3. La formazione **multidisciplinare** è cruciale per un'adozione responsabile: è necessario dotare i professionisti sanitari di competenze critiche per utilizzare l'Al in modo consapevole, etico e integrato.

Grazie per l'attenzione!

l.deangelis2@studenti.unipi.it

tinyurl.com/siiam

